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We study fully occupied lattice systems of classical magnetic dipoles which point along random axes. Only
dipolar interactions are considered. From tempered Monte Carlo simulations, we obtain numerical evidence
that supports the following conclusions: In three dimensions, �a� there is an equilibrium spin-glass phase at
temperatures below Tc, where kBTc= �0.86�0.07��d and �d is a nearest-neighbor dipole-dipole interaction
energy, �b� in the spin-glass phase the overlap parameter is approximately given by �1−T /Tc, and �c� the
correlation length � diverges at Tc with a critical exponent �=1.5�0.5; in two dimensions � diverges at or near
T=0 and �=3�1.
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I. INTRODUCTION

Several decades after the experimental discovery of spin
glasses,1 convincing numerical evidence for an equilibrium
phase transition between the paramagnetic and spin-glass
phases of the random bond Ising2,3 model in three dimen-
sions is at last available. Somewhat more controversial evi-
dence is also available for the Heisenberg model.4,5 No such
results that we know of exist for systems in which dipole-
dipole interactions dominate. This is in spite of all the inter-
est that has arisen in these systems since nanosized magnetic
particles have become experimentally available.6 Random-
ness, one of the two essential ingredients for spin-glass be-
havior, can arise from spatial disorder,7 which in turn, most
often, brings about random magnetic anisotropies. One might
naively expect that the long-range nature of dipolar interac-
tions would only strengthen the spin-glass phase that is ob-
served in the random �nearest-neighbor� bond Ising model.
However, recent results from computer simulations suggest
that an equilibrium spin-glass phase does not obtain in a
spatially disordered system of magnetic dipoles which point
along parallel axes.8 The reason for this somewhat unex-
pected result may be the nature of frustration that is peculiar
to dipolar systems. In them, there is frustration whether they
are spatially ordered or not. It is precisely because of this that
ferromagnetism or antiferromagnetism prevails in well-
ordered crystalline dipolar systems depending delicately on
lattice geometry.9 On the other hand, spin-glass-like behavior
has been observed in experiments10–12 and in simulations13–17

of dipolar systems with random anisotropies, but all this evi-
dence comes from out of equilibrium phenomena, as exhib-
ited by time dependent susceptibilities, nonexponential relax-
ation, and aging.17

We study the equilibrium behavior of systems of interact-
ing magnetic dipoles which are oriented along random aniso-
tropy axes in two and three dimensions �D�. This random
axes dipolar �RAD� model is like the old model of Harris,
Plischke, and Zuckerman,18 except that we deal with dipole-
dipole, rather than nearest-neighbor �NN� interactions. Some
motivation for the RAD model comes from the fact that an-
isotropy energies in nanoparticle assemblies are often19 much
larger than the dipole-dipole interaction energy between two

nearest neighbors. As in an Ising model, spins in the RAD
model can only point “up” or “down” along each one of their
own axes, as is discussed in Refs. 16, 20, and 21. Two inde-
pendent random numbers per site are needed to determine all
axes directions, which is the same number as for a NN ran-
dom bond Ising model on a square lattice, though the inter-
action range is of course quite different.

When we simulate the time evolution of the RAD model,
we flip each spin up and down along its own axis. We thus
make no attempt to simulate how each individual spin over-
comes large anisotropy barriers. Rather, we expect our simu-
lations to mimic the collective time evolution effects that
follow after single spin energy barriers are surmounted, as
illustrated in Figs. 1 and 2 of Ref. 14. Anyway, our main
interest does not lie in the time dependent properties of the
RAD model, but in its equilibrium behavior, which must
clearly be the same as for a system of magnetic dipoles under
a dominant anisotropy with random axes.

A summary of our results follows. We first illustrate ad-
vantages of tempered22 Monte Carlo �TMC� over
Metropolis23 Monte Carlo �MMC� simulations for the calcu-
lation of equilibrium behavior. This includes a comparison of
the time dependent magnetic susceptibility � �from MMC
runs�, which is characteristic of spin glasses, for the RAD
model in two dimensions �2D�, with equilibrium results that
follow from TMC simulations. We obtain equilibrium results
�from TMC simulations� for systems of Ld spins �d is the
lattice dimension� for d=2 and d=3, for L=4,8 ,16 and for
L=4,6 ,8 ,12, respectively. Simulations of larger systems are
very time consuming, because running times grow as L2d for
systems with dipolar interactions. Extrapolations to the L
→� limit point to the following conclusions. In three dimen-
sions �3D�, the paramagnetic phase covers the T�Tc range,
where T is the temperature, Tc= �0.86�0.07��d /kB, kB is
Boltzmann’s constant, and �d is a dipole-dipole NN interac-
tion energy which is defined below, in Sec. II A. For T�Tc,
there is an equilibrium spin-glass phase. In it, the overlap
parameter, as defined in Sec. II C, is approximately given by
�1−T /Tc. From our results we cannot quite conclude
whether the droplet24,25 or replica symmetry breaking �RSB�
�Refs. 25 and 26� picture describes the RAD spin glass in
3D. Results for the correlation length � are consistent with
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���T−Tc�−�, where Tc�0.88 and �=1.5�0.5.27 In 2D, the
paramagnetic phase covers the T	0 range, though we can-
not rule out a spin-glass phase below T�0.1. Results for the
correlation length � are consistent with ��T−�, where �
=3�1.

II. MODEL AND METHOD

A. Model

To define the model, let

H =
1

2�
ij

�

�

Tij

�Si


Sj
� �1�

be its Hamiltonian, where Si

 is the 
 �one of three� compo-

nent of the classical spin on a cubic lattice site i,

Tij

� = �d�a/rij�3��
� − 3rij


rij
�/rij

2 � , �2�

rij is the distance between i and j, �d is an energy, and a is a
NN distance. Each spin points along a randomly chosen di-
rection. More precisely, let u j be a three-component vector
chosen randomly for each i from a spherically uniform dis-
tribution of unit vectors, and let  j = �1 at each site, such
that S j =u j j. Then, H becomes

H = −
1

2�
ij

Jiji j , �3�

where Jij =−�
,�Tij

�ui


uj
�. Thus, the RAD model is an Ising

model whose bonds Jij are determined by the dipole-dipole
terms Tij


� and the set of three-component randomly oriented
unit vectors �uj�.

We use periodic boundary conditions in 2D and 3D.
Simple cubic lattices and zero applied magnetic field H are
assumed throughout. We only work with Ld boxlike systems,
and let dipole-dipole interactions act between each spin and
all other spins within an Ld box centered on it. Because of
the long-range nature of dipolar interactions, contributions
from beyond this box would have to be taken into account
�by some scheme, such as Ewald’s summation� if spins were
to point in any one preferred direction. They do not do so in
this �nonferromagnetic� model as long as H=0. The bound-
ary conditions as well as the Ld box scheme we use here are
as in Refs. 9, 28, and 29. Finally, it is worth recalling that
thermal equilibrium results obtained for H=0 for large
cubic-shaped systems can, by virtue of Griffiths theorem,30

be generalized to other shapes in three dimensions.
From here on, all temperatures are given in terms of

�d /kB, where kB is Boltzmann’s constant.

B. Monte Carlo

Let us first specify how we update the state of the system
in all Monte Carlo evolutions. Initially, we compute the di-
polar field at each site. Throughout a computer run, tables of
all spins and dipolar fields are kept. Dipolar fields are up-
dated throughout all sites in the system whenever a spin is
flipped. Thus, no computer time is wasted whenever an at-
tempt to flip a spin ends in failure. This becomes important at
low temperatures.

The idea behind the tempered Monte Carlo algorithm22 is
as follows. Consider two systems, 1 and 2, in thermal equi-
librium, not among themselves but each one of them with its
own heat bath, at temperatures T1 and T2, respectively. Let
T2�T1, and let E2 and E1 be the energies of systems 2 and 1
at some given time. In the TMC algorithm, the states of two
systems are exchanged with a certain probability p at some
specified times. It follows straightforwardly that the canoni-
cal thermal probability distributions for systems 1 and 2 are
unchanged if p=1 if E2�E1, and p=exp	��1−�2��E1−E2�

if E2�E1, where �k=1 /Tk for k=1,2.22

We do TMC simulations on k identical systems at tem-
peratures T+n�T, where n=1,2 . . .k, with initially indepen-
dent random spin configurations, and let all systems evolve
in time following the MMC algorithm for a number ñ of
consecutive MMC sweeps. �We choose ñ=10 throughout.�
After every ñ MMC sweeps, pairs of systems are given a
chance to exchange energy, following the above given rule.
More specifically, systems 2n and 2n+1, for n=0,1 ,2 , . . .,
are allowed to exchange states at jñ times, where j
=1,2 , . . ., and systems 2n and 2n−1, for n=1,2 , . . ., are
allowed to exchange states at �j+1 /2�ñ times. We choose �T
as follows. Frequent exchanges take place if the energy dif-
ference �E between systems 2n and 2n�1 is not much
larger than the energy fluctuations.22 On the other hand, we
know from our own simulations of the RAD model that the
specific heat C fulfills C�T2 for T�0.6 and C�T2 for all
0�T, both in 2D and 3D. Using C�T2, one obtains �T
�1 /�N, which is the desired condition.

How much faster stationary states are approached in TMC
than in MMC simulations is illustrated in Fig. 1, where plots
of q̃1

2 and q̃2 �defined in Sec. II C� vs time are shown, using
data points from both MMC and TMC. For further compari-
son, results obtained for the susceptibility � from MMC and
TMC simulations are shown in Fig. 2�a�. All data points,
except the low lying branch, are for the “in-plane” suscepti-
bility ��, that is, the linear in-plane magnetization response to
an in-plane applied magnetic field. The low lying branch in
Fig. 2�a� is for the “out-of-plane” linear susceptibility ��.
�As is well known, dipolar interactions lead to “shape aniso-
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FIG. 1. �Color online� q̃1
2 and q̃2 vs time for systems of 6�6

�6 spins at T=0.5. � and � are for q̃2 and q̃1
2, respectively. They

both follow from the MMC algorithm. On the other hand, � and �
are also for q̃2 and q̃1

2, respectively, but they both follow from the
TMC algorithm. All data points stand for averages over 200
samples, each with different random anisotropy axes. All systems
were allowed to evolve for over 105 MCS before any measurements
were taken.
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tropy,” which for 2D gives �� ���.28� We often write � for
��. All data points in Figs. 2�a�–2�c� follow from measure-
ments of magnetization fluctuations in H=0.

The data points from MMC simulations clearly exhibit
time dependent effects that are sometimes associated with
spin glasses. The peak in �� shifts to lower values of T as the
number of Monte Carlo steps �MCS� increases. This is as
expected from a spin glass. Results from MMC in 3D �not
shown� do not differ qualitatively from the results shown in
Fig. 2�a� for 2D. Finally, equilibrium susceptibilities that fol-
low from magnetization fluctuations in TMC runs are shown
in Fig. 2�b� for systems of various sizes, in 2D and in 3D.

C. Overlaps

We next define the equilibrium quantities we calculate.
Following the original idea of Edwards and Anderson,31 con-
sider two identical replicas, 1 and 2, of a system. Both rep-
licas have the same set of anisotropy axes but evolve in time
independently, starting from arbitrarily different initial
states.31 Let

� j =  j
�1� j

�2�, �4�

where  j
�1� and  j

�2� are the spins on site j of replicas 1 and 2,
and

q = L−d�
j

� j . �5�

We also define the moments of q, qk= �q�k�, for k=1, 2 and 4,
where . . .� stands for an average over equilibrium states of a
large number Ns of replica pairs with independent random
axes orientations. Note that we use an absolute value in the
definition of q1.32 We refer to q1 as the overlap parameter.
The spin-glass susceptibility is given by Ldq2.

Recall that if the probability distribution P�q� in the spin-
glass phase differs from zero only in a vanishingly small
neighborhood of some q= �q0, where 0�q0�1, as in the
droplet model,24,25 then, q2=q1

2�0. On the other hand, if
P�q��0 over a finite range of q values, as in the RSB
scheme,25,26 then q2�q1

2.
In order to keep track of time evolutions, we also define

�̃ j�t0 , t�= j�t0� j�t0+ t�, in close analogy with the definition
of Eq. �4�, except that both  j�t0� and  j�t0+ t� are the same
spin, at site j, at times t0 and t0+ t, respectively. We also
define q̃�t , t0�=L−d� j�̃ j�t0 , t�, and the moments q̃k in obvious
analogy to qk. No measurement is ever taken, neither for the
calculation of qk nor for q̃k�t0 , t0+ t�, in any simulation up to
time t0. The question is how to choose t0. Obviously, the t
→� limit of q̃k�t , t0� depends on t0. Indeed, aging is the
outcome of a rather long-lasting dependence on t0.12,13,17 For
equilibrium results, we choose sufficiently large values of t0
in order that q̃k�t , t0� reach steady state before t= t0. Failure to
do so would imply that equilibrium had not been reached by
t0, after which time measurements had been taken. We thus
�a� let t0 be halfway to the end of each MC run, that is, we let
t0= tf, where 2tf is the total number of MC sweeps taken in
any given run, starting from a random spin configuration,
and �b� let tf be sufficiently large for q̃k to have reached
steady state by the end of the run. For short, we write q̃k for
q̃k�tf /2, tf�. All of this is necessary but not sufficient. Con-
ceivably, an exceedingly fast initial evolution away from a
disordered state at an early t0 could drive q̃k�t0� to a null
value, long before equilibrium is reached.33 On the other
hand, the value of qk, averaged over the time interval �t0 , tf�,
would still depend on tf. Therefore, for equilibrium calcula-
tions we choose t0 �and therefore tf� sufficiently long for q̃k
to become equal to qk. For comparison, equilibrium data
points for both qk and q̃k are sometimes displayed jointly.

TABLE I. TMC simulation parameters.

d ,L 2, 4 2, 8 2, 16 2, 32 3, 4 3, 6 3, 8 3, 12

Ns 1000 600 300 100 1800 800 400 175

�T 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0.05

MCS 104 105 105 105 4�104 2�105 2�105 2�105
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FIG. 2. �Color online� �a� In-plane ���� and out-of-plane ����
susceptibilities vs T for 2D systems of L�L spins. �, �, and � are
for ��, from MMC runs of 104, 105, and 106 MCS, respectively. The
low lying string of � symbols is for ��. � is for data points which
follow from TMC for ��. Finally, all �, �, and � are for L=32 and
the rest of data points are for L=16. Error bars are roughly given by
icon sizes. �b� 1 /� vs T, from TMC simulations. All data points
above �below� the diagonal dotted line are for 3D �2D� systems. �,
�, �, and � are for L=4, 8, 16, and 32, respectively. �, �, �,
and � are for L=4, 6, 8, and 12, respectively. Parameters for TMC
runs are given in Table I.
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III. EQUILIBRIUM RESULTS

We report our equilibrium results in this section. The rel-
evant parameters for all TMC simulations from which these
results follow can be found in Table I.

Plots of equilibrium values of q2 and q1
2 vs 1 /L are shown

in Fig. 3 for systems in 3D at various temperatures. For T
�1 �T	1�, q2 and q1

2 curve upward �downward�. This sug-
gests Tc�1. Extrapolations performed on linear plots �not
shown� of q2 and q1

2 vs 1 /L give 1 /L→0 values that are well
fitted by

q1
2 = 1 −

T

Tc
, �6�

for T�Tc, and a value of Tc that is well within errors of �the
value we find below� Tc=0.86�0.07. In addition, q2 and q1

2

extrapolate to roughly the same value, for T�Tc. This would
be in accordance with the droplet model of spin glasses.
However, for reasons given below, this is not a firm conclu-
sion.

In principle, the critical exponent � can be obtained from
the plots of q2 vs 1 /L shown in Fig. 3, making use of q2
�1 /Ld−2+� at Tc, which follows from finite-size scaling
�FSS�.2,34,35 In fact, however, no meaningful number was ob-
tained for �, because the errors turned out to be too large.

Similar plots of q2 and q1
2 vs 1 /L for 2D are shown in Fig.

4. They clearly suggest that, at least for T	0.4, q2→0 as
1 /L→0.

In order to examine the data we have for q1 and q2 in a
slightly different way, we define

u12 =
2

� − 2
��

2
−

q2

q1
2� . �7�

Note that u12 is scale free, and is consequently only a func-
tion of � /L, according to FSS theory.2,34,35 u12 is analogous to
Binder’s ratio u24, which is defined in terms of q4 and q2.36

Clearly, u12=1 for the droplet model. On the other hand
u12=0 for a macroscopic paramagnetic system, since q is
normally distributed then, as follows from the central limit

theorem and the fact that � is finite in a paramagnet.
Replacement of qk by q̃k for all k in Eq. �7� gives the

definition of ũ12.
From TMC simulations we obtain the equilibrium results

for the RAD model in 3D that are shown in Fig. 5. Data
points for ũ12 are also shown for L=12 in Fig. 5 in order to
illustrate the kind of agreement we obtain between u12 and
ũ12. It is not clear in Fig. 5 whether u12 becomes approxi-
mately independent of L or keeps increasing with L for larger
values of L and T�0.9. Size independence then implies
q2 /q1

2�1+0.3T for T�Tc. On the other hand, u12→1 as L
→� would give q2�q1

2 for macroscopic sizes, which would
be in agreement with the tentative inference we drew from
Fig. 3. We are thus led to

1 �
q2

q1
2 � 1 + 0.3T �8�

for macroscopic sizes, which does not discriminate between
the droplet and RSB pictures of the RAD model.

For T�0.9 we have plotted �not shown� u12 vs 1 /L, using
data points from Fig. 5. Such plots point to u12→0 as 1 /L
→0, which in turn implies there is a paramagnetic phase for
T	0.9.

It is interesting to compare the above results with the ones
we obtained for 2D. Plots of u12 vs ũ12 are shown in Fig. 6
for various system sizes. Data points for ũ12 are also shown
for L=16. In contrast with the results for 3D, the three curves
in Fig. 6 appear to come together only gradually, as T→0.
Plots �not shown� of u12 vs 1 /L can be made from the data
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FIG. 3. �Color online� Log-log plots of q2 �black� and q1
2 �red�

vs 1 /L in 3D. The closed and open icons are for q2 and q1
2, respec-

tively. � and � are for T=0.45, � and � are for T=0.6, � and �
are for T=0.8, � and � are for T=1.0, and � and � are for T
=1.1. The lines are guides to the eye.
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FIG. 4. Plots of q2 vs 1 /L in 2D for T=0.2 ���, 0.4 ���, 0.6
���, 0.8 ���, and 1.0 ���. The lines are guides to the eye.
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FIG. 5. �Color online� u12 vs T for systems of L�L�L spins in
3D. �, �, �, and � are for L=4, 6, 8, and 12, respectively. In
addition, data points ��� for ũ12 are given for L=12. The lines are
guides to the eye. Error bars are roughly given by the icon sizes.
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points shown in Fig. 6. One can then extrapolate u12 to
1 /L→0. At least for 0.2�T, u12→0, which is consistent
with a paramagnetic phase.

We can obtain � �of an infinite size system� making use of
the data for u12 and of the fact that, according to FSS,34,35 u12
is only a function of � /L. Note that � /L is constant for any
horizontal line that intersects all the curves in either Fig. 5 or
Fig. 6. We can thus obtain ��Tn� /Ln=c, where c is some
constant and Tn and Ln are the values of T and L where a
horizontal line crosses the nth curve in Figs. 5 and 6. Differ-
ent horizontal lines give different values of c which can be
chosen independently in order to collapse all plots of � vs T
into a single � vs T curve. Thus, we obtain the plots shown in
Figs. 7 and 8.

Extrapolations in plots such as the ones shown in Fig. 7
give Tc�0.88 for 3D. From the errors in the data for u12, we
estimate an error �Tc=0.05. We determine the exponent �, in
���T−Tc�−�, from these plots. The value ��1.5 gives the
best straight-line fit in the 0.88�T�1.2 range. On this basis
we adopt the value ��1.5. Fits obtained from � values out-
side the 1���2 range show significant curvature, whence
we assign the error ��=0.5. Proceeding similarly for 2D,
using plots as the ones shown in Fig. 8, we obtain Tc�0,
though a spin-glass phase below T�0.1 is conceivable, and
�=3�1.

From different extrapolation procedures we have arrived
at values of Tc in the 	0.83,0.88
 range. Considering all the
errors involved, we arrive at

Tc = 0.86 � 0.07 �9�

for the RAD model in 3D.

IV. CONCLUSIONS

In sum, we have studied the equilibrium behavior of the
RAD model by means of tempered Monte Carlo simulations.
The sizes of the systems we have simulated, temperatures, as
well as other parameters, are given in Table I. From them, we
have drawn quantitative evidence that points to the following
conclusions. In 3D, the paramagnetic phase covers the T
�Tc range, where Tc=0.86�0.07. For T�Tc, there is a
spin-glass phase. In it, the overlap parameter, defined in Sec.
II C, does not vanish. It is approximately given by Eq. �6�.
No information about critical behavior should be drawn from
this equation, because it is not sufficiently accurate for it.
From extrapolations of q2 and q1

2 to the 1 /L→0 limit �see
Fig. 3�, one might be tempted to infer that q2 and q1

2 become
then equal, as in the droplet model. However, plots of u12 vs
T, shown in Fig. 5, do not provide firm support for such a
conclusion, because the L→� limit of u12 in the spin-glass
phase seems uncertain. We can only be reasonably sure that
the limit is somewhere between the value of u12 shown for
L=12 and 1. From this, Eq. �8�, which does not discriminate
between the applicability of the droplet24 or RSB26 pictures
to the RAD model, follows. Results for the correlation length
�, exhibited in Fig. 7, are consistent with ���T−Tc�−�,
where �=1.5�0.5.27

In 2D, the paramagnetic phase covers the T	0 range,
though we cannot rule out a spin-glass phase below T�0.1.
Results for �, exhibited in Fig. 8, are consistent with �
�T−�, where �=3�1.
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